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A Hybrid Spectral/[FDTD Method
for the Electromagnetic Analysis of
Guided Waves in Periodic Structures

A. C. Cangellaris, Member, IEEE, M. Gribbons, and G. Sohos

Abstract— A hybrid spectral/FDTD (finite-difference time-
domain) method is introduced for the analysis of electromagnetic
wave propagation in anisotropic, inhomogeneous periodic
structures. Discrete Fourier series representations for the field
components are used for the spectral calculation of spatial
derivatives along the axes of periodicity. Thus, the computational
domain is restricted to a single period. Maxwell’s system is
then solved as an initial value problem on a slightly modified
FDTD grid for the prediction of the (eigen)frequencies of the
propagating modes for a given value of the propagation constant.
Numerical results for two-dimensional periodic structures are in
excellent agreement with results obtained using other numerical
methods.

I. INTRODUCTION

HIS letter presents a hybrid spectral/FDTD method devel-

oped for the efficient electromagnetic analysis of periodic
structures of high complexity. More specifically, the proposed
method is aimed at the computationally efficient extraction
of the propagation characteristics of electromagnetic waves
in two- and three-dimensional, inhomogeneous, anisotropic
geometries which are periodic in one or two dimensions.
In addition to their slow-wave and filter characteristics, re-
cent applications of periodic dielectric structures for inte-
grated optics purposes include, distributed feedback lasers,
distributed Bragg reflection lasers, and quasiphase-matched
second-harmonic generation.

The inclusion of a spectral technique into an FDTD formu-
lation maintains favorable qualities of each method. FDTD
is well known for its simplicity in analyzing complicated
geometries which include inhomogeneities and anisotropies,
while spectral techniques are best known for their accuracy
[1]. Specifically, the employment of the Fourier transform in
the direction of periodicity garners two desirable advantages.
First, using the properties of the Fourier transform to calcu-
late derivatives insures higher accuracy. Second, the Fourier
transform automatically enforces periodic boundary conditions
which restricts the computational domain to a single period.
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II. THE SPECTRAL/FDTD METHOD

For the sake of simplicity, the formulation of the hybrid
spectral/FDTD method is presented for the case of a two-
dimensional periodic structure. Without loss of generality,
the media are assumed to be nonmagnetic with permeability
po = 4m x 1077 H/m. As far as their dielectric properties
are concerned, the media are characterized by the electric
permittivity tensor
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where €;;(z, z), i = x,y, z, are periodic functions of z with
period d, €;;(z, 2z + d) = €;;(x, z), and their independence of
y reflects the fact that the periodic structure under study is
two-dimensional.

From the two possible types of wave propagation in the 2
direction, transverse magnetic (TM,) and transverse electric
(TE.), the TM, type is used for the presentation of the
proposed spectral/FDTD method. Let 8y be the unknown
propagation constant. Then the electric and magnetic fields
for the TM, guided waves are of the form
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where the Fourier series representations are a direct conse-
quence of the periodicity of the functions E,, F., and H,
according to Floquet’s theorem for periodic structures [2].
Maxwell’s curl equations can be written in the following form
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Fig. 1. Mesh for TM mode in hybrid spectral/FDTD method.

where the dependence of the periodic functions F,, F,, and
f, on x,z,t has been omitted for simplicity.

The numerical solution of (4)-(6) is based on a hybrid
spectral/FDTD approximation of the spatial derivatives. The
approximation utilizes the grid shown in Fig. 1. The grid
extends over a single period of the structure. Derivatives with
respect to « are approximated using central differences. As far
as the derivatives with respect to z (direction of periodicity)
are concerned, they are computed spectrally as follows.

The values of the periodic function £, at the grid points
z = (/N)d,i=0,1,2,---, N — 1, where N is the number
of grid points along z, are used to calculate its discrete Fourier
coefficients for a given (z,t)
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The derivative OF,/dz is then approximated as
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The derivative 9H,/0z is computed in a similar fashion.

Clearly, the aforementioned spectral computation of deriva-
tives along z facilitates the exact enforcement of the periodic
boundary conditions, and is responsible for the restriction of
the computational domain to a single cell of the periodic
structure. The discrete Fourier transforms in (7) and (8) are
computed efficiently using standard FFT routines.

In a manner similar to the standard FDTD method, electric
and magnetic fields are staggered in time so that central-
difference approximations to the time derivatives can be
used. Given the value of the propagation constant Jy, as
well as initial conditions for the fields over the unit cell of
the structure, the discrete system of Maxwell's equations is
integrated in time using a leap-frog scheme. The eigenfre-
quencies of the system, i.e., the frequencies at which the
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Fig. 2. Periodically segmented dielectric waveguide structure.

various propagating modes in the periodic structure exhibit
the selected propagation constant 3y, are computed from the
Fourier transforms of the time histories of the fields. More
specifically, these eigenfrequencies correspond to the peaks in
the Fourier spectra.

The details of numerical stability of this hybrid spec-
tral/FDTD scheme will be discussed in a later article. It can
be shown that, for the two-dimensional case considered here,
the scheme is stable provided that

A\’ [ Bo(Az)  w\° E
() (29T o

where v is the maximum value of the speed of light in

the computational domain, At is the time step used in the
numerical integration, and Az, Az are the grid sizes along z
and z, respectively.

v(At) < (Ax)

III. RESULTS

To demonstrate the validity of the proposed method, the
periodically segmented waveguide shown in Fig, 2 was an-
alyzed. The pertinent values for the structure are listed in
Table I. Such waveguides are recently used for the quasiphase-
matched second harmonic generation of blue light [3]. The
structure shown in Fig. 2 was analyzed in [4] using a mode-
matching approach. It was noted in [4] that the dispersion
curve for the fundamental mode of the segmented waveguide
agrees “‘to at least six significant digits of accuracy with those
obtained by using a regular slab waveguide model, provided
that the index of the slab [is] taken to be the weighted average
of [nn] and [nm]," where nia = \/% and nia = m
The transcendental equation for the TM modes of the slab
waveguide is well known, giving a convenient model for
comparison.
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TABLE II
COMPARISON BETWEEN SLAB MODEL AND THIS METHOD
Slab Model This Method
B(x108m—1) Mode f (THz) f (THz) % Difference

6.75 T My 173.518 173.308 —0.121
13.71 T My 351.633 351.627 —0.002
T M, 352.805 352.839 +0.010
20.815 T Mo 533.540 533.680 +0.064
TM, 534.437 534.655 +0.041
T Mo 535.868 536.045 +0.033
26.405 T Mo 676.692 676.966 +0.040
T My 677.437 677.740 +0.045
TM> 678.658 678.986 40.048
T Ms3 680.287 680.601 +0.046

For the hybrid technique described in this paper, choice of
the initial condition is critical for speeding-up its convergence.
For the specific structure, the mode profiles of the slab
waveguide formed by a cross section across regions I, I, and
III in Fig. 2 were used for the transverse representation of
the initial field distribution. As far as the spectral estimation
process is concerned, the scheme used was prompted by an
approach found in [5]. At the conclusion of each time step the
correlation of the field in the guide to the initial condition is
performed,

£2) = / dz / 4ol (2, 2,t = ) H,(z,2,1).  (10)

At the end of the computation, the FFT of f(t) is found and
analyzed for the peaks which give the frequencies of the modes
for the particular B, used.

In the analysis, perfect electric conductors were used 1.4 pym
above the air/substrate interface and 7.0 pum below the in-
terface for simple grid truncation. The discretization in the
transverse direction was taken as dx = 21.0 nm. In the
direction of periodicity, the discretization was dz = 78.1245
nm, which corresponds to the period divided by 64. Each
simulation was run for 4096 time steps.

Table II shows a comparison of the values found using
the slab waveguide model and this method. The agreement
between the two methods is seen to be excellent. As a matter
of fact, the conclusion in [4] that the dispersion properties of
the segemented guide can be deduced from the analysis of a
regular slab guide with index refraction equal to the weighted
averages of nyr and nypy, seems to be valid for higher order
modes as well. The accuracy is maintained even when multiple
modes are present in the structure.

IV. CONCLUSION

In this letter, we showed that inclusion of a spectral tech-
nique in an FDTD formulation eases the analysis of periodic
structures. By using FDTD, inhomogenities and anisotropies
are easily modeled. By using spectral, only a single period
needs to be modeled and accuracy is increased.

The approach presented is an eigenvalue solver. By spec-
ifying the value of the phase constant, the frequency values
of the corresponding modes are found. This is a reversal of
the method used in frequency domain techniques, where the
frequency is specified and the corresponding phase constants
of the guided modes are found. However, in a frequency
domain technique, the solution of a matrix eigenvalue problem
is required which can be very expensive computationally for
electrically large periodic structures. For example, for a three-
dimensional grid of 5A X 5A X 5A with a modest discretization
of A\/10, taking into account the three components of one of
the fields, there are 375000 unknowns in the finite element
matrix for a frequency domain technique. By extending the
present method to three dimensions, the authors feel a great
reduction in computational effort can be achieved.

In the last section, the accuracy obtainable was demon-
strated. That accuracy can be further increased by iterative
means. By using the field distribution found at the end of a run
as the excitation for a new run at the same 3y, improvement
and convergence of the results should be seen. By such
iterative refinement, answers within computational accuracy
should be achievable.

This method’s greatest usefulness lies in its capability to
model periodic structures that have complex geometries and
anisotropy. Open structures can be easily handled by applying
the analysis used to modify Maxwell’s equations to obtain
Mur’s second-order radiation boundary conditions. In future
publications, applications of the method to such structures are
sure to be presented as well as extension of the method to
three-dimensional structures.
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