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A Hybrid Spectral/FDTD Method

for the Electromagnetic Analysis of

Guided Waves in Periodic Structures
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Abstract— A hybrid spectral/FDTD (finite-difference time-
domain) method is introduced for the analysis of electromagnetic

wave propagation in anisotropic, inhomogeneous periodic
structures. Discrete Fourier series representations for the field
components are used for the spectral calculation of spatial

derivatives along the axes of periodicity. Thus, the computational
domain is restricted to a single period, Maxwell’s system is
then solved as an initial value problem on a slightly modified

FDTD grid for the prediction of the (eigen)frequencies of the

propagating modes for a given value of the propagation constant.

Numerical results for two-dimensionrd periodic structures are in
excellent agreement with results obtained using other numerical

methods.

I. INTRODUCTION

T HIS letter presents a hybrid spectral/FDTD method devel-

oped for the efficient electromagnetic analysis of periodic

structures of high complexity. More specifically, the proposed

method is aimed at the computationally efficient extraction

of the propagation characteristics of electromagnetic waves

in two- and three-dimensional, inhomogeneous, anisotropic

geometries which are periodic in one or two dimensions.

In addition to their slow-wave and filter characteristics, re-

cent applications of periodic dielectric structures for inte-

grated optics purposes include, distributed feedback lasers,

distributed Bragg reflection lasers, and quasiphase-matched

second-harmonic generation.

The inclusion of a spectral technique into an FDTD formu-

lation maintains favorable qualities of each method. FDTD

is well known for its simplicity in analyzing complicated

geometries which include inhomogeneities and anisotropies,

while spectral techniques are best known for their accuracy

[1]. Specifically, the employment of the Fourier transform in

the direction of periodicity garners two desirable advantages.

First, using the properties of the Fourier transform to calcu-

late derivatives insures higher accuracy. Second, the Fourier

transfotm automatically enforces periodic boundary conditions

which restricts the computational domain to a single period.
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II. THE SPECTRAL/FDTD METHOD

For the sake of simplicity, the formulation of

spectral/FDTD method is presented for the case

dimensional periodic structure. Without loss of
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of a two-

generality,

the media are assumed to be nonmagnetic with permeability

p. = 47r x 10–7 H/m. As far as their dielectric properties

are concerned, the media are characterized by the electric

permittivity tensor

where <ii (x, z), i = x, y, z, are periodic functions of z with

period d, ~ii (T, z + d) = ~ii (x, z), and their independence of

y reflects the fact that the periodic structure under study is

two-dimensional.

From the two possible types of wave propagation in the z

direction, transverse magnetic (TM=) and transverse electric

(TEZ), the TM= type is used for the presentation of the

proposed spectral/FDTD method. Let Do be the unknown

propagation constant. Then the electric and magnetic fields

for the TMZ guided waves are of the form

(x
cc

— ~f) (x, t)e—
)

jn(2mz/d) e–j,/3G (1)

\n=–ec /

E.(z, z,t) = Ez(z, z, t)e–~p”z

where the Fourier series representations are a direct conse-

quence of the periodicity of the functions E., E., and Hy
according to Floquet’s theorem for periodic structures [2].

Maxwell’s curl equations can be written in the following form

105 1–8207/93$03.00 0 1993 IEEE



376 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL 3, NO. 10, OCTOBER 1993

TABLE I
PARAMETERS FOR FIG, 1

— — — — —

f’1’ t’
— ——

‘4’
w 2.5pm

d 5.Opm

— — — —

— — — —

— — —

x f’
Yl-=z

1’

tx PEC\
Fig. 1. Mesh for TM mode in hybrid spectral/FDTD method
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Fig. 2. Periodically segmented dielectric waveguide structure.where the dependence of the periodic functions Ez, Ez, and

Hg on x, z, t has been omitted for simplicity.

The numerical solution of (4)–(6) is based on a hybrid

spectral/FDTD approximation of the spatial derivatives. The

approximation utilizes the grid shown in Fig. 1. The grid

extends over a single period of the structure. Derivatives with

respect to z are approximated using central differences. As far

as the derivatives with respect to z (direction of periodicity)

are concerned, they are computed spectrally as follows.

The values of the periodic function E. at the grid points

z, = (i/JV)d, i = O, 1,2, . . . ,IV – 1, where IV is the number

of grid points along z, are used to calculate its discrete Fourier

coefficients for a given (z, t)

various propagating modes in the periodic structure exhibit

the selected propagation constant PO, are computed from the

Fourier transforms of the time histories of the fields. More

specifically, these eigenfrequencies correspond to the peaks in

the Fourier spectra.

The details of numerical stability of this hybrid spec-

tral/FDTD scheme will be discussed in a later article. It can

be shown that, for the two-dimensional case considered here,

the scheme is stable provided that

[ (:)’( w+:)’]-’ (9)
‘U(M) < (Az) 1 +

@(z, t) = ~‘ yEz(z,zz,t)e-’(2Tn”d’>
‘i=l)

–N/2<n<N/2–l. (7) where v is the maximum value of the speed of light in

the computational domain, At is the time step used in the

numerical integration, and Az, Az are the grid sizes along ~

and Z, respectively.

The derivative i3Ez /19z is then approximated as

~=o, l,. ... I–I. (8) III. RESULTS

The derivative 13HU/tlz is computed in a similar fashion.

Clearly, the aforementioned spectral computation of deriva-

tives along z facilitates the exact enforcement of the periodic

boundary conditions, and is responsible for the restriction of

the computational domain to a single cell of the periodic

structure. The discrete Fourier transforms in (7) and (8) are

computed efficiently using standard FFT routines.

In a manner similar to the standard FDTD method, electric

and magnetic fields are staggered in time so that central-

difference approximations to the time derivatives can be

used. Given the value of the propagation constant flo, as

well as initial conditions for the fields over the unit cell of

the structure, the discrete system of Maxwell’s equations is

integrated in time using a leap-frog scheme. The eigenfre-

quencies of the system, i.e., the frequencies at which the

To demonstrate the validity of the proposed method, the

periodically segmented waveguide shown in Fig. 2 was an-

alyzed, The pertinent values for the structure are listed in
Table I. Such waveguides are recently used for the quasiphase-

matched second harmonic generation of blue light [3]. The

structure shown in Fig. 2 was analyzed in [4] using a mode-

matching approach. It was noted in [4] that the dispersion

curve for the fundamental mode of the segmented waveguide

agrees “to at least six significant digits of accuracy with those

obtained by using a regular slab waveguide model, provided

that the index of the slab [is] taken to be the weighted average

Of [nll] and [nIII],” where nll = & and nlll = &.

The transcendental equation for the TM modes of the slab

waveguide is well known, giving a convenient model for

comparison.
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TABLE II
COMPARISONBETWEEN SLAB MODEL AND THIS METHOD

Slab Model This Method

@(xlo6rl-1) Mode f (THz) f (THz) % Difference

6.75 TMo 173.518 173.308 –0.121

13.71 TiWo 351.633 351.627 –0.002

TMI 352.805 352.839 +0.010
20.815 TMo 533.540 533.680 +0.064

T&fl 534.437 534.655 +0.041

TM2 535.868 536.045 +0.033

26.405 TMo 676.692 676.966 +0.040

TivI1 677.437 677.740 +0.045

TM2 678.658 678.986 +0.048

TM3 680.287 680.601 +0.046

For the hybrid technique described in this paper, choice of

the initial condition is critical for speeding-up its convergence.

For the specific structure, the mode profiles of the slab

waveguide formed by a cross section across regions I, II, and

III in Fig. 2 were used for the transverse representation of

the initial field distribution. As far as the spectral estimation

process is concerned, the scheme used was prompted by an

approach found in [5]. At the conclusion of each time step the

correlation of the field in the guide to the initial condition is

performed,

f(t) = / dz / dxff;(x, z,t = O) HY(X, z, t). (lo)
JJ

At the end of the computation, the FFT of ~(t) is found and

analyzed for the peaks which give the frequencies of the modes

for the particular ,#0 used.

In the analysis, perfect electric conductors were used 1.4 &m

above the air/substrate interface and 7.0 pm below the in-

terface for simple grid truncation. The discretization in the

transverse direction was taken as dz = 21.0 nm. In the

direction of periodicity, the discretization was d.z = 78.1245
nm, which corresponds to the period divided by 64. Each

simulation was run for 4096 time steps.

Table II shows a comparison of the values found using

the slab waveguide model and this method. The agreement

between the two methods is seen to be excellent. As a matter

of fact, the conclusion in [4] that the dispersion properties of

the segmented guide can be deduced from the analysis of a

regular slab guide with index refraction equal to the weighted

averages of nll and nlll, seems to be valid for higher order

modes as well. The accuracy is maintained even when multiple

modes are present in the structure.

IV. CONCLUSION

In this letter, we showed that inclusion of a spectral tech-

nique in an FDTD formulation eases the analysis of periodic

structures. By using FDTD, inhomogenities and anisotropies

are easily modeled. By using spectral, only a single period

needs to be modeled and accuracy is increased.

The approach presented is an eigenvalue solver. By spec-

ifying the value of the phase constant, the frequency values

of the corresponding modes are found. This is a reversdl of

the method used in frequency domain techniques, where the

frequency is specified and the corresponding phase constants

of the guided modes are found. However, in a frequency

domain technique, the solution of a matrix eigenvalue prob~em

is required which can be very expensive computationally for

electrically large periodic structures. For example, for a three-

dimensional grid of 5A x 5A x 5A with a modest discretization

of A/10, taking into account the three components of one of

the fields, there are 375000 unknowns in the finite element

matrix for a frequency domain technique. By extending the

present method to three dimensions, the authors feel a great

reduction in computational effort can be achieved.

In the last section, the accuracy obtainable was demon-

strated. That accuracy can be further increased by iterative

means. By using the field distribution found at the end of a run

as the excitation for a new run at the same f?o, improvement

and convergence of the results should be seen. By such

iterative refinement, answers within computational accuracy

should be achievable.

This method’s greatest usefulness lies in its capability to

model periodic structures that have complex geometries and

anisotropy. Open structures can be easily handled by applying

the analysis used to modify Maxwell’s equations to obtain

Mur’s second-order radiation boundary conditions. In future

publications, applications of the method to such structures are

sure to be presented as well as extension of the method to

three-dimensional structures.
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